1,4-DIMETHYL-3,6-DIOXO-1,2,4,5-TETRAZIN-1-IUM-5(4H)-ID, A NEW SIX-MEMBERED HETEROCYCLIC BETAINE

Franz A. Neugebauer^{*}, Hans Fischer and Claus Krieger

Max-Planck-Institut für medizinische Forschung Abteilung Organische Chemie Jahnstr. 29, D-6900 Heidelberg, West Germany

<u>Abstract:</u> The preparation, the spectroscopic characterization, the crystal structure and chemical reactions of the new six-membered heterocyclic betaine $\underline{2}$ are reported; $\underline{2}$ is a representative of a possibly large group of yet unknown betaines of the general structure $\underline{8}$.

Dehydrogenation of the colourless 1,4-disubstituted 1,2,4,5-tetrahydro-1,2,4,5-tetrazin-3,6-diones¹, e.g. with atmospheric oxygen in the presence of base or with di-p-tolylaminyl [DTA, from tetra-p-tolylhydrazine in dioxane at 60[°]C] leads to the formation of extraordinarily deeply coloured solutions.

Starting from 1 we could now isolate the blue compound 2, as black plates from dioxane [49%, by dehydrogenation with DTA, m.p. 146°C (dec.); UV/VIS (dioxane); λ_{max} (lg ε) = 603 (3.49), 571 (3.50), 227 nm (4.23)]. Reduction of 2 (1 mole H₂, Pd) gave back the initial reactant 1. The low solubility of 2 in nonpolar organic solvents as well as the low field shift of the methyl proton resonance [CDCl₃; 1: δ = 3.11 ppm; 2: δ = 4.08 ppm] and the shift of the carbonyl vibration \Im (C=O) to lower frequency [CHCl₂; 1:1690 cm⁻¹;

 $\underline{2}$: 1659 cm⁻¹] indicate a betaine constitution. These spectroscopic data in solution suggest a resonance structure $\underline{2a}$ with the positive charge at the methyl substituted nitrogen and the negative charge at the oxygen, in analogy to known six-membered heterocyclic betaines².

The crystal structure of $\underline{2}$ (Fig.) was determined by X-ray structure analysis³. In crystal $\underline{2}$ has C₁ symmetry. The six-membered heterocycle is planar (deviations from the least squares plane < 1 pm). The remarkably short C-O distance (121.5 pm) corresponds to a neat C=O double bond like in aldehydes and ketones (121.5 pm) or in the reference compound $\underline{3}$ ¹ (122.4 pm, 1,2,4,5-tetramethyl-1,2,4,5-tetrahydro-1,2,4,5-tetrazin-3,6-dione), whereas in betaines like pyridinium-3-olates the C-O bond length is found to be about 128 pm ⁴. In comparison with $\underline{3}$ the betaine $\underline{2}$ shows as only significant difference a considerably shorter N-N distance ($\underline{2}$: 131.0 pm; $\underline{3}$: 141.1 pm) which comes near to the distance of a N=N double bond (125 pm). $\underline{2}$ has a remarkably

Fig. Structure of the betaine $\underline{2}$

high density $(D_x = 1.60 \text{ g/cm}^3; \underline{3}: D_x = 1.29 \text{ g/cm}^3)$ which results apparently from the planar ring arrangement and optimal packing.

H₃C CH₃ The crystal structure of the betaine $\frac{2}{2}$ reminds one of a quinonoid system. Actually $\frac{2}{2}$ shows such properties. For example, $\frac{2}{2}$ and its precursor $\frac{1}{2}$ comproportionate in the presence of base to give a persistent radical anion $\frac{4}{4}$ [ESR (dimethyl sulfoxide): g = 2.0039; $a(H_{CH_3}) = 6.40$ (6H), $a(N_{1,4}) = 6.40$, $a(N_{2,5}) = 5.58$ G], whereas in acidic solution the corresponding radical cation $\frac{5}{2}$ is immediately formed [ESR (CF₃COOH): g = 2.0039; $a(H_{CH_3}) = 7.38$ (6H), $a(N_{1,4}) = 7.09$, $a(N_{2,5}) =$ 5.29 G]. The betaineitself is protonated in acidic solution. The blue $\frac{2}{2}$ dissolves in water or weak acids with red [monoprotonation $\frac{6}{5}$; UV/VIS (HCOOH): λ_{max} (lg ε) = 524 nm (3.56)] and in 70% perchloric acid with yellow colour [probably diprotonation $\frac{7}{2}$; UV/VIS (70% HClo₄): λ_{max} (lg ε) = 464 (3.47), 217 nm (4.13)].

 $\frac{2}{2}$ is a representative of a possibly large group of yet unknown betaines of the general structure $\underline{8}$. In addition to the shown X and Y variations in $\underline{8}$

also the carbonyl groups can be formally replaced by other functions, e. g. C=S, C=NR. The betaine $\frac{9}{2}$ mentioned in the literature⁵ could be regarded as first example of the series $\frac{8}{2}$; but restudies of the compound gave evidence of a di-2-quinolinylethanedione constitution^{6,7}.

References and Notes

- F. A. Neugebauer and H. Fischer, Liebigs Ann. Chem. <u>1981</u>, 387 and unpublished results.
- 2. C. A. Ramsden, Adv. Heterocycl. Chem. 26, 1 (1980).
- 3. Black plates from dioxane; space group $P2_1/n$, a = 680.2(1), b = 558.9(1), c = 834.7(1) pm; B = 111.53(1); Z = 2; 775 measured, 528 [I \ge 1.96 σ (I)] observed reflexions; R = 0.045. Further details of the crystal structure investigation can be obtained from the Cambridge Crystallographic Data Centre and from the Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, West Germany, by quoting the depository number CSD 50497, the name of the authors, and the journal citation.
- A. R. Katritzky, C. A. Ramsden, Z. Zakaria, R. L. Harlow and S. H. Simonsen, J. Chem. Soc. Perkin Trans. I 1980, 1870.
- B. R. Brown and D. L. Hammick, J. Chem. Soc. <u>1950</u>, 628; C. A. Ramsden, Adv. Heterocycl. Chem. 26, 104 (1980).
- 6. C. A. Buehler and J. O. Harris, J. Am. Chem. Soc. <u>72</u>, 5015 (1950).
- 7. D. R. Davies and H. M. Powell, Nature <u>168</u>, 386 (1951). (Received in Germany 17 November 1983)